Q.P. Code: 18EE0242

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR

(AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations December-2021 NETWORK THEORY

(Electronics and Communication Engineering)

Time: 3 hours

1

PART-A

Max. Marks: 60

R18

	(Answer all the Questions $5 \times 2 = 10$ Marks)		
a	Write the procedure to obtain Dual network.	L1	2 M
b	Define Resonance and Resonant frequency.	L1	2 M
с	What is the behavior of Capacitor in Initial and Steady state conditions?	L2	2M
d	Draw the equivalent circuit of Z-parameters.	L1	2M
e	Write the expression for trigonometric form of Fourier series.	L1	2 M
	PART-B		

(Answer all Five Units $5 \times 10 = 50$ Marks)

UNIT-I

- 2 a Explain about Mesh analysis and write the steps for writing mesh analysis. L1 5M
 - **b** Determine the current in 10Ω resistor for the following network by using nodal L3 5M analysis.

3 a State and prove Reciprocity theorem.

L1 5M

b Determine the maximum power delivered to the load in the circuit shown in below L3 5M figure.

UNIT-II

OR

4 Explain about Constant-K high-pass filter in detail.

L2 10M

5M

- **5** a Explain about Quality factor and Band-width of Series resonance.
 - **b** A series RLC circuit has $R=10\Omega$, L=0.1H and $C=50\mu F$. The applied voltage is L3 5M 100V. Find Resonant frequency & Quality factor of a coil.

Q.P. Code: 18EE0242

10

6 Derive the Transient Response of Series RLC circuit with Sinusoidal excitation.

OR

- 7 **a** A series RC circuit consists of a resistor of 10Ω and capacitor of 0.1 F with a L3 5M constant voltage of 20v, is applied to the circuit at t=0.0btain the current equation. Determine the voltage across the resistor and the capacitor.
 - **b** In the circuit shown in figure, determine the complete solution for the current when L3 5M switch is closed at t=0,applied voltage is $V(t)=50 \cos(102t+\Pi/4)$, resistance R=10 Ω and capacitance C= 1 μ F.

8 a Derive the expressions for Z-parameters in terms of ABCD-parameters. L2 5M

b The Z-parameters of a two-port network are $Z_{11} = 10\Omega$, $Z_{22} = 15\Omega Z_{12} = 5\Omega$ and $Z_{21} = 5\Omega$ **L3** 5M Find the equivalent T-network and ABCD parameters?

OR

9 a Find the transmission parameters for the circuit shown in figure. L3 5M $10 - \sqrt{2\Omega}$

b The given Y-parameters are, Y11= 0.5, Y12= Y21= 0.6, Y22= 0.9.Find Impedance L3 5M parameters.

- Write and prove the properties of Fourier transforms L1 10M OR
- 11 Determine the Fourier transforms of the following waveforms shown in figure(a) L3 10M and figure(b).

R18

L1 10M